Writing Game Theory in ATEX

Thiago Silva*

First Version: November 22, 2015
This Version: November 13, 2017

List of Figures and Tables

1 2x2 Matrix: Prisoner's Dilemma Normal-Form Game 3
2 Two Matrices: Generalization of Prisoner's Dilemma 4
3 Finding the Nash Equilibrium of Prisoner's Dilemma (Underlining Players' Best Responses) 4
4 Prisoner's Dilemma in Extensive-form 5
5 Finding the Subgame Perfect Nash Equilibrium in Prisoner's Dilemma (Using Double Lines) 5
$6 \quad$ Finding the Nash Equilibrium (Using Dots) 6
7 3x3 Matrix: A Game with Three Actions 6
$8 \quad 2 x 4$ Matrix: A Game with Two Actions for P_{1} and Four Actions for P_{2} 7
$9 \quad$ Bach or Stravinsky? 7
10 The Game of Chicken (The Hawk-Dove Game) 7
11 Matching Pennies 7
12 Game with Mixed Strategies (Example 1) 7
13 Game with Mixed Strategies (Example 2) 8
14 Centipede Game 8
15 Three Players Game: Combining Extensive Form with Matrix Form 8
16 Alternative Three Players Game: Combining Extensive Form with Matrix Form 8
17 Veto Game in Extensive-Form (One Node for P_{1} and Three Nodes for P_{2}) 9
18 Extensive-Form Game with Imperfect Information (Highlighting a Subgame) 9
19 Extensive-Form Game with Imperfect Information and a Large Information Set 10
20 Game Tree with Curved Information Set 10
21 Long Game Tree with Three Information Sets 11
22 Game in Horizontal Extensive-Form 12
23 A More Complex Horizontal Decision Tree 13
24 Signaling Game 13

[^0]In order to present how to write game theory in $\mathrm{ETEX}_{\mathrm{E}} \mathrm{X}$, I will use the most popular game in game theory called the Prisoner's Dilemma (PD) as an example. The PD shows why two rational individuals might not cooperate even if cooperation is in their best interest, thus resulting in a sub-optimal outcome. The game was formalized and named by Albert Tucker. ${ }^{1}$

The Prisoner's Dilemma (in static or normal-form game) consist of:

- A set of players N, and $N=\{1,2\}$, where 1 stands for "Player 1 " and 2 stands for "Player 2."
- For each $i \in N$, a set of actions S_{i} - that is, a set of actions or a set of strategies$S_{i}=\{C, D\}$, where C stands for "Cooperate" and D stands for "Defect." In PD $S_{1}=S_{2}=\{C, D\}$.
- For each $i \in N$, a preference relation \succsim_{i} over $S_{1} \times S_{2}$ (i.e., the Cartesian product). Instead of outcome, we usually use the term action profiles (or strategy profiles), i.e., a combination of actions such as (DC), (CC), and so on. Players care about their actions, because their actions lead to action profiles that have payoff utilities assigned to them. Each player has a utility function $v_{i}: S_{1} \times S_{2} \rightarrow \mathbb{R}$. For any collection of sets $S_{1}, S_{2}, \ldots, S_{n}$, we define $S_{1} \times S_{2} \times \cdots \times S_{n}=\left\{\left(s_{1}, s_{2}, \ldots, s_{n}\right) \mid s_{1} \in S_{1}, \ldots, s_{n} \in S_{n}\right\}$. We call $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ the ordered "n-tuples" ordered pairs $\left(s_{1}, s_{2}\right)$. This is important to show that $(1,2) \neq(2,1)$. For PD game $S_{1} \times S_{2}=\{C C, C D, D C, D D\}$.

The ordering of the action profiles, from best to worst - where the first action in parentheses represents player 1's action and the second action represents player 2's action-is (D, C), where player 1 defects and player 2 cooperates; (C, C), where both 1 and 2 cooperate; (D, D), where both 1 and 2 defect, and; (C, D), where 1 cooperates and 2 defects.

The players' preferences can be represented according to payoff functions. First, we assign a utility function u, such as u_{1} for player 1 , and u_{2} for player 2 . We can express the order of

[^1]players' preferences as,

For player 1:

$$
\begin{equation*}
u_{1}(D, C)>u_{1}(C, C)>u_{1}(D, D)>u_{1}(C, D) \tag{1}
\end{equation*}
$$

For player 2:
$u_{2}(C, D)>u_{2}(C, C)>u_{2}(D, D)>u_{1}(D, C)$

Then, we can assign the respective payoffs,

For P_{1} :
$u_{1}(D, C)=3>u_{1}(C, C)=2>u_{1}(D, D)=1>u_{1}(C, D)=0$

For P_{2} :
$u_{2}(C, D)=3>u_{2}(C, C)=2>u_{2}(D, D)=1>u_{2}(D, C)=0$

We can represent the game in a payoff matrix, also called "normal-form game":

Table 1: 2x2 Matrix: Prisoner's Dilemma Normal-Form Game

	Player 2	
	C	D
Player 1 C	2,2	0,3
D	3, 0	1,1

The traditional Prisoners's Dilemma can be generalized from its original setting (see the right matrix below): If both players cooperate, they both receive the reward payoff R for cooperating. If both players defect, they both receive the punishment payoff P. If 1 defects while 2 cooperates, then 1 receives the temptation payoff T, while 2 receives the "sucker's" payoff, S. Symmetrically, if 1 cooperates while 2 defects, then 1 receives the sucker's payoff S, while 2 receives the temptation payoff T.

Figure 2: Two Matrices: Generalization of Prisoner's Dilemma

Finding the Nash equilibrium (NE) of the Prisoner's Dilemma (PD) game: The action profile a^{*} in a strategic game with ordinal preferences is a Nash equilibrium if, for every player i and every action a_{i} of player i, a^{*} is at least as good according to player i 's preferences as the action profile $\left(a_{i}, a_{-i}^{*}\right)$ in which player i chooses a_{i} while every other player $-i$, with $i \neq-i$, chooses a_{-i}^{*}. Therefore, for every player i

$$
\begin{equation*}
u_{i}\left(a^{*}\right) \geq u_{i}\left(a_{i}, a_{-i}^{*}\right) \forall a_{i} \in A_{i} \tag{3}
\end{equation*}
$$

where A_{i} is the set of actions for player i, and u_{i} is a payoff function that represents player i 's preferences.

Table 3: Finding the Nash Equilibrium of Prisoner's Dilemma (Underlining Players' Best Responses)

	Player 2	
	C	D
Player 1 C	2,2	0, $\underline{1}$
D	3, 0	$\underline{1}, \underline{1}$

Each underlined action indicates the best response of each player according to the other player's action. Therefore, $N E=(D, D)$.

The PD can also be depicted in a game of extensive-form (or decision tree), such as:

Figure 4: Prisoner's Dilemma in Extensive-form

Figure 5: Finding the Subgame Perfect Nash Equilibrium in Prisoner's Dilemma (Using Double Lines)

Other Examples and Game Forms

Table 6: Finding the Nash Equilibrium (Using Dots)
Player 2

Player 1

	C	D
	2,2	$0, \dot{3}$
	2,2	
	$\dot{3}, 0$	$\dot{1}, \dot{1}$

The small dot on top of each payoff indicates the best response of each player according to the other player's action. Note: Be careful to not confuse strategy profiles (or outputs) with payoff utilities (i.e., $(D, D) \neq(1,1))$. The equilibrium (or equilibria) of a game refers to the strategy profile(s). Therefore, $N E=(D, D)$.

An alternative depiction of players' strategy profiles and their respective payoff utilities (e.g., PD in normal-form game):

For all $\mathrm{a}_{i} \in A_{i}, \nu_{i}\left(a_{i}, a_{-i}\right)=\left\{\begin{array}{lll}3 & \text { if } & (D, C) \\ 2 & \text { if } & (C, C) \\ 1 & \text { if } & (D, D) \\ 0 & \text { if } & (C, D)\end{array}\right.$

Table 7: 3x3 Matrix: A Game with Three Actions

	Player 2		
Cooperate		Defect	

Table 8: 2x4 Matrix: A Game with Two Actions for P_{1} and Four Actions for P_{2}

Table 9: Bach or Stravinsky?
Player 2

		Bach	
	Stravinsky		
	Bach	Stayer 1	3,2
	Stravinsky	0,0	
	0,0	2,3	

Figure 10: The Game of Chicken (The Hawk-Dove Game)

Table 11: Matching Pennies
Player 2

	Heads		Tails
Player 1	Heads	$1,-1$	$-1,1$
	Tails	$-1,1$	$1,-1$

Table 12: Game with Mixed Strategies (Example 1)

Table 13: Game with Mixed Strategies (Example 2)

Figure 14: Centipede Game

Figure 15: Three Players Game: Combining Extensive Form with Matrix Form

Figure 16: Alternative Three Players Game: Combining Extensive Form with Matrix Form

Figure 17: Veto Game in Extensive-Form (One Node for P_{1} and Three Nodes for P_{2})

Based on exercise 163.2 of Osborne's book: Osborne, Martin J. 2004. An Introduction to Game Theory. Oxford: Oxford University Press.

Figure 18: Extensive-Form Game with Imperfect Information (Highlighting a Subgame)

Figure 19: Extensive-Form Game with Imperfect Information and a Large Information Set

Note: This is Figure 7.D. 2 in Mas-Colell, Whinston, and Green's book on microeconomic theory (1995), as replicated by Haiyun Chen (Simon Fraser University).

Figure 20: Game Tree with Curved Information Set

Note: This is Figure 6 in Osborne's "Manual for egameps.sty."

Figure 21: Long Game Tree with Three Information Sets

Note: This game tree was drew by Austin Mitchell (Texas A\&M University).

We can also depict a game drawing a horizontal decision tree (horizontal extensive-form):
Figure 22: Game in Horizontal Extensive-Form

Expected utilities (EU) of the soccer player based on Figure 22:

$$
\begin{aligned}
& v(\text { Corinthians })=(p)(12)+\left(\frac{1}{2}\right)(6)+\left(\frac{1}{2}-p\right)(2) \\
& =12 p+3+1-2 p=10 p+4 \\
& \text { and } \\
& v(\text { Palmeiras })=(p)(10)+\left(\frac{1}{2}\right)(8)+\left(\frac{1}{2}-p\right)(4) \\
& =10 p+4+2-4 p=4 p+6
\end{aligned}
$$

So, the soccer player should play in Corinthians if :

$$
\begin{aligned}
& 10 p+4>4 p+6 \quad(-4 p) \\
& 6 p+4>6 \quad(-4) \\
& 6 p>2 \quad(\div 6) \\
& p>\frac{2}{6} \quad(\div 2) \\
& p>\frac{1}{3}
\end{aligned}
$$

Figure 23: A More Complex Horizontal Decision Tree

Figure 24: Signaling Game

Note: This game was drew by Chiu Yu Ko (National University of Singapore).

One-shot deviation principle (OSD)

$$
\begin{array}{r}
V 1 \\
\text { stick } \leftarrow V 2
\end{array} \begin{array}{ll|l|l|ll}
C & \mathrm{nr} & C & \mathrm{nr} & \ldots & C \\
\mathrm{r} & C & \mathrm{nr} & \ldots & (C-K)+\frac{\delta R}{1-\delta}=(C-K)+\delta R+\frac{\delta^{2} R}{1-\delta} \\
V 1 & C & \mathrm{nr} & D & \mathrm{nr} & C \\
\mathrm{nr} & \ldots \\
\mathrm{OSD} \leftarrow V 2 & C & \mathrm{nr} & D & \mathrm{r} & C \\
\mathrm{nr} & \ldots & C+\delta(P-K)+\frac{\delta^{2} R}{1-\delta}
\end{array}
$$

Sticking is optimal if,

$$
\begin{aligned}
& (C-K)+\delta R \geq C+\delta(P-K) \\
& \delta(K+R-P) \geq K \\
& \delta \geq \frac{K}{K+R-P} \in(0,1)
\end{aligned}
$$

[^0]: *PhD Candidate, Department of Political Science, Texas A\&M University, College Station, TX, 778434348, USA. E-mail: nsthiago@tamu.edu

[^1]: ${ }^{1}$ See Poundstone, William. 1992 Prisoner's Dilemma. New York City: Anchor Books.

