Writing Game Theory in ${\rm IAT}_{\rm E}\!{\rm X}$

Thiago Silva*

First Version: November 22, 2015 This Version: November 13, 2017

List of Figures and Tables

1	2x2 Matrix: Prisoner's Dilemma Normal-Form Game	3
2	Two Matrices: Generalization of Prisoner's Dilemma	4
3	Finding the Nash Equilibrium of Prisoner's Dilemma (Underlining Players'	
	Best Responses)	4
4	Prisoner's Dilemma in Extensive-form	5
5	Finding the Subgame Perfect Nash Equilibrium in Prisoner's Dilemma (Using	
	Double Lines)	5
6	Finding the Nash Equilibrium (Using Dots)	6
7	3x3 Matrix: A Game with Three Actions	6
8	2x4 Matrix: A Game with Two Actions for P_1 and Four Actions for P_2	7
9	Bach or Stravinsky?	$\overline{7}$
10	The Game of Chicken (The Hawk-Dove Game)	7
11	Matching Pennies	$\overline{7}$
12	Game with Mixed Strategies (Example 1)	$\overline{7}$
13	Game with Mixed Strategies (Example 2)	8
14	Centipede Game	8
15	Three Players Game: Combining Extensive Form with Matrix Form	8
16	Alternative Three Players Game: Combining Extensive Form with Matrix Form	8
17	Veto Game in Extensive-Form (One Node for P_1 and Three Nodes for P_2).	9
18	Extensive-Form Game with Imperfect Information (Highlighting a Subgame)	9
19	Extensive-Form Game with Imperfect Information and a Large Information Set	10
20	Game Tree with Curved Information Set	10
21	Long Game Tree with Three Information Sets	11
22	Game in Horizontal Extensive-Form	12
23	A More Complex Horizontal Decision Tree	13
24	Signaling Game	13

^{*}PhD Candidate, Department of Political Science, Texas A&M University, College Station, TX, 77843-4348, USA. E-mail: nsthiago@tamu.edu

The Prisoner's Dilemma (in static or normal-form game) consist of:

- A set of players N, and $N = \{1, 2\}$, where 1 stands for "Player 1" and 2 stands for "Player 2."
- For each $i \in N$, a set of actions S_i —that is, **a set of actions** or a set of strategies— $S_i = \{C, D\}$, where C stands for "Cooperate" and D stands for "Defect." In PD $S_1 = S_2 = \{C, D\}$.
- For each $i \in N$, a **preference relation** \succeq_i over $S_1 \times S_2$ (i.e., the Cartesian product). Instead of outcome, we usually use the term *action profiles* (or strategy profiles), i.e., a combination of actions such as (DC), (CC), and so on. Players care about their actions, because their actions lead to action profiles that have payoff utilities assigned to them. Each player has a utility function $v_i : S_1 \times S_2 \to \mathbb{R}$. For any collection of sets S_1, S_2, \ldots, S_n , we define $S_1 \times S_2 \times \cdots \times S_n = \{(s_1, s_2, \ldots, s_n) | s_1 \in S_1, \ldots, s_n \in S_n\}$. We call (s_1, s_2, \ldots, s_n) the ordered "n-tuples" ordered pairs (s_1, s_2) . This is important to show that $(1, 2) \neq (2, 1)$. For PD game $S_1 \times S_2 = \{CC, CD, DC, DD\}$.

The ordering of the action profiles, from best to worst—where the first action in parentheses represents player 1's action and the second action represents player 2's action—is (D, C), where player 1 defects and player 2 cooperates; (C, C), where both 1 and 2 cooperate; (D, D), where both 1 and 2 defect, and; (C, D), where 1 cooperates and 2 defects.

The players' preferences can be represented according to payoff functions. First, we assign a utility function u, such as u_1 for player 1, and u_2 for player 2. We can express the order of

¹See Poundstone, William. 1992 Prisoner's Dilemma. New York City: Anchor Books.

players' preferences as,

For player 1:

$$u_1(D,C) > u_1(C,C) > u_1(D,D) > u_1(C,D)$$
(1)

For player 2:

$$u_2(C,D) > u_2(C,C) > u_2(D,D) > u_1(D,C)$$

Then, we can assign the respective payoffs,

For
$$P_1$$
:
 $u_1(D,C) = 3 > u_1(C,C) = 2 > u_1(D,D) = 1 > u_1(C,D) = 0$
(2)
For P_2 :
 $u_2(C,D) = 3 > u_2(C,C) = 2 > u_2(D,D) = 1 > u_2(D,C) = 0$

We can represent the game in a payoff matrix, also called "normal-form game":

Table 1: 2x2 Matrix: Prisoner's Dilemma Normal-Form Game

		Player 2		
		С	D	
Player 1	С	2, 2	0,3	
i layer i	D	3,0	1, 1	

The traditional Prisoners's Dilemma can be generalized from its original setting (see the right matrix below): If both players cooperate, they both receive the reward payoff R for cooperating. If both players defect, they both receive the punishment payoff P. If 1 defects while 2 cooperates, then 1 receives the temptation payoff T, while 2 receives the "sucker's" payoff, S. Symmetrically, if 1 cooperates while 2 defects, then 1 receives the sucker's payoff S, while 2 receives the temptation payoff T.

P_2				F	\mathcal{D}_2	
		Cooperate	Defect		Cooperate	Defect
P.	Cooperate	2, 2	0,3	P. Cooperate	R, R	S, T
1	Defect	3,0	1, 1	Defect	T, S	P, P

Figure 2: Two Matrices: Generalization of Prisoner's Dilemma

Finding the Nash equilibrium (NE) of the Prisoner's Dilemma (PD) game: The action profile a^* in a strategic game with ordinal preferences is a Nash equilibrium if, for every player i and every action a_i of player i, a^* is at least as good according to player i's preferences as the action profile (a_i, a^*_{-i}) in which player i chooses a_i while every other player -i, with $i \neq -i$, chooses a^*_{-i} . Therefore, for every player i

$$u_i(a^*) \ge u_i(a_i, a^*_{-i}) \,\forall \, a_i \in A_i \tag{3}$$

where A_i is the set of actions for player *i*, and u_i is a payoff function that represents player *i*'s preferences.

Table 3: Finding the Nash Equilibrium of Prisoner's Dilemma (Underlining Players' Best Responses)

Player 2
C D
Player 1 C
$$2,2$$
 $0,\underline{3}$
D $\underline{3},0$ $\underline{1},\underline{1}$

Each underlined action indicates the best response of each player according to the other player's action. Therefore, NE = (D, D).

The PD can also be depicted in a game of extensive-form (or decision tree), such as:

Figure 4: Prisoner's Dilemma in Extensive-form

Figure 5: Finding the Subgame Perfect Nash Equilibrium in Prisoner's Dilemma (Using Double Lines)

Other Examples and Game Forms

Table 6: Finding the Nash Equilibrium (Using Dots)

		Player 2		
		С	D	
Playor 1	С	2, 2	$0,\dot{3}$	
Player 1	D	$\dot{3}, 0$	İ,İ	

The small dot on top of each payoff indicates the best response of each player according to the other player's action. **Note:** Be careful to not confuse strategy profiles (or outputs) with payoff utilities (i.e., $(D, D) \neq (1, 1)$). The equilibrium (or equilibria) of a game refers to the strategy profile(s). Therefore, NE = (D, D).

An alternative depiction of players' strategy profiles and their respective payoff utilities (e.g., PD in normal-form game):

For all
$$a_i \in A_i, \nu_i(a_i, a_{-i}) = \begin{cases} 3 & \text{if } (D, C) \\ 2 & \text{if } (C, C) \\ 1 & \text{if } (D, D) \\ 0 & \text{if } (C, D) \end{cases}$$

Table 7: 3x3 Matrix: A Game with Three Actions

		Player 2				
		Cooperate	Defect	Neither		
	Cooperate	R, R	S, T	T, S		
Player 1	Defect	T, S	P, P	R, S		
	Neither	T, S	P, P	S, S		

		F	2	
	C Unconditionally	D Unconditionally	Imitation Move	Opposite Move
P. C	R, R	S, T	R,R	S,T
$^{\prime 1}$ D	T, S	P, P	P, P	T, S

Table 8: 2x4 Matrix: A Game with Two Actions for ${\cal P}_1$ and Four Actions for ${\cal P}_2$

Table 9: Bach or Stravinsky?

		Player 2		
		Bach	Stravinsky	
Player 1	Bach	3, 2	0, 0	
1 layer 1	Stravinsky	0, 0	2, 3	

P_2				P_2		
		Swerve	Straight		Swerve	Straight
P.	Swerve	0, 0	-1, 1	P. Swerve	Tie, Tie	Lose, Win
1 1	Straight	1, -1	-10, -10	¹ Straight	Win, Lose	Crash, Crash

Table 11: Matching Pennies

		Player 2		
		Heads	Tails	
Player 1	Heads	1, -1	-1, 1	
1 layer 1	Tails	-1, 1	1, -1	

Table 12: Game with Mixed Strategies (Example 1)

	F	\mathcal{D}_2
	(q) A	(1 - q) B
P_1 (p) A	lpha,eta	ϵ, ζ
$P_1 \begin{array}{c} (p) A \\ (1-p) B \end{array}$	γ, δ	$\eta, heta$

Table 13: Game with Mixed Strategies (Example 2)

	I	\mathcal{D}_2
	(q) D	(1 - q) E
(x) A	ι, κ	o, π
P_1 (y) B	λ, μ	$ ho, \sigma$
(1 - x - y) C	$ u, \xi $	$ au, \upsilon$

Figure 14: Centipede Game

1	C = 2	C 1	C = 2	C = 1	C = 2	$C \longrightarrow \Phi, \Psi$
Ĭ	Ţ	Ĭ	Ţ	Ĭ		• 1, 1
D	D	D	D	D	D	
ϕ, χ	ψ, ω	Γ, Δ	Θ, Λ	Ξ,Π	Σ,Υ	

Figure 15: Three Players Game: Combining Extensive Form with Matrix Form

Figure 16: Alternative Three Players Game: Combining Extensive Form with Matrix Form

Figure 17: Veto Game in Extensive-Form (One Node for P_1 and Three Nodes for P_2)

Based on exercise 163.2 of Osborne's book: Osborne, Martin J. 2004. An Introduction to Game Theory. Oxford: Oxford University Press.

Note: This is Figure 7.D.2 in Mas-Colell, Whinston, and Green's book on microeconomic theory (1995), as replicated by Haiyun Chen (Simon Fraser University).

Figure 20: Game Tree with Curved Information Set

Note: This is Figure 6 in Osborne's "Manual for egameps.sty."

Figure 21: Long Game Tree with Three Information Sets

Note: This game tree was drew by Austin Mitchell (Texas A&M University).

We can also depict a game drawing a horizontal decision tree (horizontal extensive-form):

Figure 22: Game in Horizontal Extensive-Form

Expected utilities (EU) of the soccer player based on Figure 22:

$$v(\text{Corinthians}) = (p)(12) + (\frac{1}{2})(6) + (\frac{1}{2} - p)(2)$$
$$= 12p + 3 + 1 - 2p = 10p + 4$$

and

$$v(\text{Palmeiras}) = (p)(10) + (\frac{1}{2})(8) + (\frac{1}{2} - p)(4)$$
$$= 10p + 4 + 2 - 4p = (4p + 6)$$

So, the soccer player should play in Corinthians if :

$$10p + 4 > 4p + 6 \quad (-4p)$$

$$6p + 4 > 6 \quad (-4)$$

$$6p > 2 \quad (\div 6)$$

$$p > \frac{2}{6} \quad (\div 2)$$

$$(p > \frac{1}{3})$$

Figure 23: A More Complex Horizontal Decision Tree

Figure 24: Signaling Game

Note: This game was drew by Chiu Yu Ko (National University of Singapore).

One-shot deviation principle (OSD)

$$\begin{array}{c|c|c} V1 & C & \mathrm{nr} & C & \mathrm{nr} \\ \mathrm{stick} \leftarrow V2 & C & \mathrm{r} & C & \mathrm{nr} \\ \end{array} \\ & \dots \\ & (C-K) + \frac{\delta R}{1-\delta} = (C-K) + \delta R + \frac{\delta^2 R}{1-\delta} \end{array}$$

Sticking is optimal if,

$$(C - K) + \delta R \ge C + \delta (P - K)$$

$$\delta (K + R - P) \ge K$$

$$\delta \ge \frac{K}{K + R - P} \in (0, 1)$$